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Abstract. We propose visual tracking over multiple temporal scales to
handle occlusion and non-constant target motion. This is achieved by
learning motion models from the target history at different temporal
scales and applying those over multiple temporal scales in the future.
These motion models are learned online in a computationally inexpen-
sive manner. Reliable recovery of tracking after occlusions is achieved by
extending the bootstrap particle filter to propagate particles at multiple
temporal scales, possibly many frames ahead, guided by these motion
models. In terms of the Bayesian tracking, the prior distribution at the
current time-step is approximated by a mixture of the most probable
modes of several previous posteriors propagated using their respective
motion models. This improved and rich prior distribution, formed by
the models learned and applied over multiple temporal scales, further
makes the proposed method robust to complex target motion through
covering relatively large search space with reduced sampling effort. Ex-
tensive experiments have been carried out on both publicly available
benchmarks and new video sequences. Results reveal that the proposed
method successfully handles occlusions and a variety of rapid changes in
target motion.

1 Introduction

Visual tracking is one of the most important unsolved problems in computer
vision. Though it has received much attention, no framework has yet emerged
which can robustly track across a broad spectrum of real world settings. Two
major challenges for trackers are abrupt variations in target motion and occlu-
sions. In some applications, e.g. video surveillance and sports analysis, a target
may undergo abrupt motion changes and be occluded at the same time.

While many solutions to the occlusion problem have been proposed, it re-
mains unsolved. Some methods [1–3] propose an explicit occlusion detection and
handling mechanism. Reliable detection of occlusion is difficult in practice, and
often produces false alarms. Other methods, e.g. those based on adaptive ap-
pearance models [4, 5], use statistical reasoning to handle occlusions indirectly,
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(a) Multiple motion models are learned
from the recent history of estimated states
at different temporal scales, and each
model is applied to multiple temporal
scales in the future.

(b) This means that, when determining target state,
multiple sets of motion models are available to make
predictions. Each set includes models learnt at mul-
tiple model-scales. In the proposed framework one
model per set is selected to propagate particles.

Fig. 1: Visual Tracking Over Multiple Temporal Scales.

by learning how appearance changes over time. Occlusions can, however, con-
taminate the appearance models, as such methods use blind update strategies.

Abruptly varying motion can be addressed using a single motion model with
a large process noise. This approach requires large numbers of particles and
is sensitive to background distractors. Alternative approaches include efficient
proposals [6], or hybrid techniques with hill climbing methods [7] to allocate
particles close to the modes of the posterior. These approaches can, however, be
computationally expensive.

We propose a new tracking method that is capable of implicitly coping with
partial and full target occlusion and non-constant motion. To recover from oc-
clusion we employ a flexible prediction method, which estimates target state at
temporal scales similar to the expected maximum duration of likely occlusions.
To achieve this, motion models are learnt at multiple model-scales and used to
predict possible target states at multiple prediction-scales ahead in time. The
model-scale is the duration of a sequence of recently estimated target states
over which a motion model is learnt. The prediction-scale is the temporal dis-
tance, measured in frames of the input image sequence, over which a prediction
is made. Reliable recovery of tracking after occlusions is achieved by extending
the bootstrap particle filter to propagate particles to multiple prediction-scales,
using models learnt at multiple model-scales. Fig. 1 summarises the approach.

The proposed framework can handle variable motion well due to the follow-
ing: In predictive tracking, learnt motion models describe the recent history of
target state —the most recent section of the target’s path across the image plane.
Trackers using, for example, a single linear motion model effectively represent
target path as a straight line. By building multiple motion models at multiple
model scales, the proposed framework maintains a much richer description of
target path. The diverse set of models produced captures at least some of the
complexity of that path and, when used to make predictions, the model set
represents variation in target motion better than any single model.

The contributions of this work are three-fold. (1) We propose and evaluate
the idea of tracking over multiple temporal scales to implicitly handle occlusions
of variable lengths and achieve robustness to non-constant target motion. This
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is accomplished by learning motion models at multiple model-scales and ap-
plying them over multiple prediction-scales. Consequently, the proposed frame-
work does not require an explicit occlusion detection, which could be difficult to
achieve reliably in practice. (2) We propose a simple but generic extension of
the bootstrap particle filter to search around the predictions generated by the
motion models. (3) Current trackers typically adopt a first-order Markov Chain
assumption, and predict a target’s state at time t using only its state at time
t−1. That is, they all work on a single temporal scale i.e. [t−1, t]. We propagate
important part of some recently estimated posteriors to approximate prior dis-
tribution at the current time-step through combining the above two proposals
in a principled way. The resulting formulation is a tracker operating at multiple
temporal scales that has not been proposed before to the best of our knowledge.

2 Related Work

Occlusion handling may be explicit or implicit. Implicit approaches can be di-
vided into two categories. The first is based on adaptive appearance models
which use statistical analysis [4, 5, 8] to reason about occlusion. The appear-
ance models can, however, become corrupt during longer occlusions due to the
lack of an intelligent update mechanism. Approaches in the second category di-
vide the target into patches and either use a voting scheme [9] or robust fusion
mechanism [10] to produce a tracking result. These can, however, fail when
the number of occluded patches increases. The proposed approach also handles
occlusion implicitly, but using a fixed and very simple appearance model.

Explicit occlusion handling requires robust occlusion detection. Collins et
al. [1] presented a combination of local and global mode seeking techniques.
Occlusion detection was achieved with a naive threshold based on the value
of the objective function used in local mode seeking. Lerdsudwichai et al. [2]
detected occlusions by using an occlusion grid with a drop in similarity value.
This approach can produce false alarms because the required drop in similarity
could occur due to natural appearance variation. To explicitly tackle occlusions,
Kwak et al. [3] trained a classifier on the patterns of observation likelihoods in
a completely offline manner. In [11] and [12], an occlusion map is generated by
examining trivial coefficients, this is then used to determine the occlusion state
of a target candidate. Both these methods are prone to false positives where
it is hard to separate the intensity of the occluding object from small random
noise. The proposed approach here does not detect occlusions explicitly, as it is
difficult to achieve reliably.

Some approaches address domain-specific occlusion of known target types.
Lim et al. [13] propose a human tracking system based on learning dynamic
appearance and motion models. A three-dimensional geometric hand model was
proposed by Sudderth et al. [14] to reason about occlusion in a non-parametric
belief propagation tracking framework. Others [15, 16] attempt to overcome oc-
clusion using multiple cameras. As most videos are shot with a single camera,
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and multiple cameras bring additional costs; this is not a generally applicable
solution. Furthermore, a domain-agnostic approach is more widely applicable.

Recently, some methods exploited context along with target description [17–
19], and a few exploited detectors [20, 21] to overcome occlusions. Context-based
methods can tackle occlusions, but rely on the tracking of auxiliary objects.
Approaches based on detector could report false positives in the presence of
distractors, causing the tracker to fail. Our approach does not search the whole
image space, instead multiple motion models define relatively limited search
spaces of variable size where there is high target probability. This results in
reduced sampling effort and lower vulnerability to distractors.

When target motion is difficult to model, a common solution is to use a single
motion model with a large process noise. Examples of such models are random-
walk (RW) [22, 7] and nearly constant velocity (NCV) [23, 24]. Increased process
noise demands larger numbers of particles to maintain accurate tracking, which
increases computational expense.

One approach to the increased variance in estimation caused by high pro-
cess noise is to make an efficient and informed proposal distribution. Okuma
et al. [6] designed a proposal distribution that mixed hypotheses generated by
an AdaBoost detector and a standard autoregressive motion model to guide a
particle filter based tracker. [25] formulated a two-stage dynamic model to im-
prove the accuracy and efficiency of the bootstrap PF, but their method fails
during frequent spells of non-constant motion. Kwon and Lee [8] sampled mo-
tion models generated from the recent sampling history to enhance the accuracy
and efficiency of MCMC based sampling process. We also learn multiple motion
models, but at different model-scales instead of a single scale and use recently
estimated states history in comparison to sampling history.

Several attempts have been made to learn motion models offline. Isard and
Blake [26] use a hardcoded finite state machine (FSM) to manage transitions
between a small set of learned models. Madrigal et al. [27] guide a particle filter
based target tracker with a motion model learned offline. Pavlovic et al. [28]
switch between motion models learned from motion capture data. Their ap-
proach is application specific, in that it learns only human motion. [29] classifies
videos into categories of camera motion and predicts the right specialist motion
model for each video to improve tracking accuracy, while we learn motion models
over multiple temporal scales in an online manner to generate better predictions.
An obvious limitation of offline learning is that models can only be used to track
the specific class of targets for which they are trained.

To capture abrupt target motion, which is difficult for any motion model, [30]
combined an efficient sampling method with an annealing procedure, [31] selects
easy-to-track frames first and propagates density from all the tracked frames to
a new frame through a patch matching technique, and [32] introduced a new
sampling method into the Bayesian tracking. Our proposed method tries to
capture reasonable variation in the target’s path.

Two approaches that at first glance appear similar to ours are [33], and [34].
Mikami et al. [33] use the entire history of estimated states to generate a prior
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distribution over the target state at immediate and some future time-steps,
though the accuracy of these prior distributions relies on strict assumptions.
In [34], offline training is required prior to tracking and thus it cannot be read-
ily applied to track any object. Our approach learns multiple simple motion
models at relatively short temporal scales in a completely online setting, and
each model predicts the target state at multiple temporal scales in the future.

In contrast to previous work, we learn motion models over multiple model-
scales, whose predictions are pooled over multiple prediction-scales to define the
search space of a single particle filter. Hence, this is an online learning approach
not restricted to any specific target class, and a novel selection criterion selects
suitable motion models without the need for a hardcoded FSM.

3 Bayesian Tracking Formulation

Our aim is to find the best state of the target at time t given observations up to t.
State at time t is given by Xt = {Xx

t , X
y
t , X

s
t },where Xx

t ,Xy
t , and Xs

t represent
the x,y location and scale of the target, respectively. In a Bayesian formulation,
our solution to tracking problem comprises two steps: update(1), and prediction
(2).

p(Xt|Y1:t) ∝ p(Yt|Xt)p(Xt|Y1:t−1). (1)

Where p(Xt|Y1:t) is the posterior probability given the state Xt at time t, and
observations Y1:t up to t. p(Yt|Xt) denotes the observation model.

p(Xt|Y1:t−1) =

∫
Xt−1

p(Xt|Xt−1)p(Xt−1|Y1:t−1)dXt−1. (2)

Where p(Xt|Y1:t−1) is the prior distribution at time t, and p(Xt|Xt−1) is a
motion model.

In this work, we improve the accuracy of the posterior distribution at a given
time t by improving the prior distribution. Here, the prior distribution is ap-
proximated by a mixture of the most probable modes of T previous posteriors
propagated by the T selected motion models, which are generated using infor-
mation from up to T frames ago. The Eq.2 in the standard Bayesian formulation
can now be written as:

p(Xt|Y1:t−1) =

∫ k=T

k=1

∫
Xt−k

p(Xt|Xt−k)p(X̃t−k)dXt−kdk. (3)

Where p(Xt|Xt−k) is the motion model selected at time t from a set of motion
models learned at time t−k, and p(X̃t−k) ⊂ p(Xt−k|Y1:t−k) is the most probable
mode (approximated via particles) of the posterior at time t−k. A relatively rich
and improved prior distribution in Eq.3 allows handling occlusions and abrupt
motion variation in a simple manner without resorting to complex appearance
models and exhaustive search methods.



6 Muhammad H. Khan, Michel F. Valstar, and Tony P. Pridmore

The best state of the target X̂t is obtained using Maximum a Posteriori
(MAP) estimate over the Nt weighted particles which approximate p(Xt|Y1:t),

X̂t = arg max
X

(i)
t

p(X
(i)
t |Y1:t) for i = 1, ..., Nt, (4)

where X
(i)
t is the ith particle.

4 Proposed Method

4.1 A Multiple Temporal Scale Framework

To reliably recover the target after occlusion and achieve robustness to non-
constant motion, we introduce the concept of learning motion models at a range
of model-scales, and applying those over multiple prediction-scales. Furthermore,
we contribute a simple but powerful extension of the bootstrap particle filter to
search around the predictions generated by the motion models.

The core idea is to construct an improved and rich prior distribution at each
time-point by combining sufficient particle sets that at least one set will be valid
and allow recovery from occlusion and robustness to non-constant motion. A
valid particle set is the most probable mode of an accurate estimation of the
posterior probability from some previous time-point, propagated by a motion
model generated over an appropriate model-scale and unaffected by occlusion.

Learning and Predicting Motion Over Multiple Temporal Scales Sim-
ple motion models are learned over multiple model-scales and are used to make
state predictions over multiple prediction-scales. A simple motion model is char-
acterized by a polynomial function of order d, and represented by M. M is
learned at a given model-scale separately for the x-location, y-location, and
scale s of the target’s state.1 This learning also considers how well each state is
estimated in a given sequence and how far it is from the most recently estimated
state [25]. For instance, an M of order 1, learned at model-scale m, predicts a
target’s x-location at time t as:

x̃t = βm
o + βm

1 t, (5)

where β1 is the slope, and βo the intercept. Model parameters can be learned
inexpensively via weighted least squares.

A set of learned motion models at time t is represented by M
j=1,...,|Mt|
t ,

where |.| is the cardinality of the set. Each model predicts target state l(x̃, ỹ, s̃)
at T prediction-scales. See Fig. 2a and 2b for an illustration of learning and
prediction.

1 To demonstrate the basic idea of the proposed approach and for the sake of simplicity, x,y, and s
part of the target state are considered uncorrelated. They may be correlated, and taking this into
account while learning might produce improved models. We would pursue this avenue in future
work.
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(a) During learning, multiple motion models
are constituted at multiple model-scales us-
ing the recent history of estimated states at
time t. In this figure, four linear motion mod-
els are learned over four different model-scales
at time t. The four model-scales are 2,3,4, and
5.

(b) During prediction, a set of learned mo-
tion models are used to predict possible target
states at T prediction-scales. In this figure, a
set comprising four learned motion models is
shown at time t. Each motion model predicts
possible target state at T prediction-scales.

Fig. 2: Graphical illustration of what happens during learning and prediction.

Model Set Reduction The aim of model set reduction is to establish search
regions for the particle filter in which there is a high probability of target being
present. This in turn will reduce the sampling effort as search regions corre-
sponding to all the predictions no longer need to be searched.

Suppose there are T sets of motion models available at time t, one from
each of T previous time-steps. Each set of models at time t is represented by its
corresponding set of predictions. The most suitable motion model from each set
is selected as follows.

Let us denote G = |Mt|, and let lkt = {lj,kt |j = 1, ..., G} represent a set of

states predicted by G motion models learned at time t − k, where lj,kt denotes
the predicted state by jth motion model learned at kth previous time-step. As
k = 1, ..., T , there are T sets of predicted states at time t (Fig. 3(a)). Now the
most suitable motion model Rk

t is selected from each set using the following
criterion:

l̂kt = arg max
lj,kt

p(Yt|lj,kt ) (6)

where l̂kt is the most suitable state prediction from the set lkt , and p(Yt|lj,kt )

measures the visual likelihood at the predicted state lj,kt . In other words, l̂kt
is the most suitable state prediction of the most suitable motion model Rk

t .

For example, Fig. 3(b) shows the predicted state l̂1t of the most suitable motion
model R1

t chosen from 4 motion models learned at time t−1. After this selection
process, the T sets of motion models are reduced to T individual models.

Propagation of particles In the bootstrap particle filter [35], the posterior

probability at time t−1 is estimated by a set of particles X
(i)
t−1 and their weights

ω
(i)
t−1,{X(i)

t−1, ω
(i)
t−1}Ni=1, such that all the weights in the particle set sum to one.

The particles are resampled to form an unweighted representation of the pos-

terior {X(i)
t−1, 1/N}Ni=1. At time t, they are propagated using the motion model

p(Xt|Xt−1) to approximate a prior distribution p(Xt|Yt−1). Finally, they are
weighted according to the observation model p(Yt|Xt), approximating the pos-
terior probability at time t.
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Fig. 3: (a)Before model set reduction, there exist T different sets of predicted states at time t,

where each set lkt comprises G states predicted by G motion models learned at kth previous time-

step. In Fig. 3(a), l1t is a set composed of 4 states predicted by 4 motion models learned at time
t − 1. (b)Model Set Reduction. T sets of motion models available at time t, represented by the
corresponding T sets of predicted states, are reduced to T individual models. Fig. 3(b) shows the

predicted state l̂1t of the most suitable motion model R1
t selected from 4 motion models learned

at time t − 1. (c)Propagation of Particles. T selected motion models, one from each of the T
preceding time-steps, are used to propagate particle sets from T preceding time-steps to time t. In
Fig. 3(c), the most suitable motion model R1

t , is used to propagate particle set from time t − 1 to
time t.

Here, particle sets not just from one previous time-step (t − 1), but from T
previous time-steps are propagated to time t using the T selected motion models.
When using first-order polynomial (linear) motion models the most suitable
motion model Rk

t selected from those learnt at the kth previous time-step will
propagate a particle set from the kth previous time-step as follows

Xx
t,k = Xx

t−k + g(Rk
t )k +N (0, σ2

xk), (7)

where Xx is the horizontal part of the target state, g() indicates the slope of
the model, and N (0, σx) is a Gaussian distribution with zero-mean and σ2

x vari-
ance. For instance, in Fig. 3(c), the most suitable motion model R1

t , is used to
propagate a particle set from time t− 1 to time t.

Propagation from the last T time-steps, generates T particle sets at time t.
All particles are weighted using the observation model p(Yt|Xt) to approximate
the posterior probability p(Xt|Y1:t). If the target was occluded for less than or
equal to T −1 frames, it may be recovered by a set of particles unaffected by the
occlusion. To focus on particles with large weights, and reduce computational
cost, we retain the first N particles after the resampling step. The proposed
framework is summarised in Algorithm 1.

5 Experimental Results

In the proposed method, the appearance model used in all experiments was the
colour histogram used in [36].2 The Bhattacharyya coefficient was used as the
distance measure. As simple motion model the first-order polynomial (linear)
model with model-scales of 2,3,4, and 5 frames was used (four models in total).

2 We investigate the power of using multiple temporal scales of motion model generation and ap-
plication to deal with visual tracking problems related to occlusion and abrupt motion variation.
To evaluate this hypothesis independently of the appearance model, a simple appearance model
is used on purpose.



MTS: A Multiple Temporal Scale Tracker 9

Algorithm 1 A Multiple Temporal Scale Tracker

Input: Let W = {Wt−1, ...,Wt−T } represent the resampled sets of particles after

estimation of the posterior from T previous time-steps, where Wt−1 = {X(i)
t−1,

1
N
}Ni=1.

Output: Best state X̂t at time t.
for k = 1 to T

for j = 1 to G
- Measure visual likelihood p(Yt|lj,kt ), where lj,kt denotes the predicted state

at time t by jth motion model from kth previous time-step.
end
- Select the most suitable motion model Rk

t at time t using Eq.6.
- Propagate the particle set from kth previous time-step Wt−k = {X(i)

t−k,
1
N
}Ni=1

using Eq.7 by taking the slope of selected motion model Rk
t to time t.

end
- Assign weights to all the particles to approximate the posterior {X(i)

t , ω
(i)
t }N×T

i=1 .
- Calculate the best state X̂t using Eq.4.
- Retain first N particles after the resampling step.
- Learn simple motion models using the recent history of estimated states.

MTS-L denotes the proposed method applied over a first-order polynomial
(linear) motion model (Algorithm 1). We also apply our proposed framework to
the two-stage model of [25], which is denoted by MTS-TS, to show its general-
ity3. In MTS-TS, the β parameter of the two-stage model was fixed at 10, giving
high weight to the rigid velocity v̂, estimated by the simple motion model, and
very low weight to the internal velocity v. As a result, it becomes strongly biased
towards the predicted location, but still allows some deviation.

We compared the proposed method to three baseline and seven state-of-
the-art trackers. The first two baseline trackers, TRW and TNCV , were colour
based particle filters from [36], but use different motion models. TRW used a
random-walk model while TNCV used a nearly constant velocity model. The
third baseline tracker TTS was the two-stage dynamic model proposed by [25].
The parameters, K and β, in [25] were set to 5 and 10, respectively. The state-
of-the-art trackers are SCM [37], ASLA [38], L1-APG [12],VTD [5], FragT [9],
SemiBoost [21], and WLMCMC [30]. The minimum and maximum number of
samples used for WLMCMC, VTD, SCM, ASLA, and L1-APG was 600 and
640, respectively. Our proposed tracker is implemented in MATLAB and runs at
about 3 frames/sec with 640 particles. The source code and datasets(along with
ground truth annotations) will be made available on the authors’ webpages.

We chose state-of-the-art trackers keeping in view two important properties:
their performance according to the CVPR’13 benchmark [39], and their ability
to handle occlusions (partial and full) and abrupt motion variations. SCM and
ASLA both have top ranked performance on the CVPR’13 benchmark. SCM
combines a sparsity based classifier with a sparsity based generative model and

3 MTS-TS is identical to MTS-L except that the propagation of particles takes place through a
different model instead of the model proposed in Eq. 7 and the variance of the best state (estimated
through particles) is reduced by combining it with the highest likelihood motion prediction. See
the supplementary material for the details of this application.
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has a occlusion handling mechanism, while ASLA is based on a local sparse
appearance model and is robust to partial occlusions. In L1-APG, the coupling
of L1 norm minimization and an explicit occlusion detection mechanism makes it
robust to partial as well as full occlusions. The integration of two motion models
having different variances with a mixture of template-based object models lets
VTD explore a relatively large search space, while remaining robust to a wide
range of appearance variations. FragT was chosen because its rich, patch-based
representation makes it robust to partial occlusion. SemiBoost was picked as it
searches the whole image space once its tracker loses target, and thus, it can
re-locate the target after full occlusions. WLMCMC searches the whole image
space by combining an efficient sampling strategy with an annealing procedure
that allows it to capture abrupt motion variations quite accurately and re-locate
the target after full occlusions.

(a) TU-Cr]46 (b) TU-Cr]46 (c) TU-Cr]124 (d) TU-Cr]124 (e) car]169 (f) car]169

Fig. 4: Tracking through multiple partial occlusions. MTS-TS(magenta), MTS-L(cyan), SCM(green)
FragT(white), Semi(yellow), L1-APG(blue), VTD(red), WLMCMC(black), and ASLA(purple).

Eleven video sequences were used. Seven are publicly available (PETS 2001
Dataset 1 4, TUD-Campus [40], TUD-Crossing [40], Person [41], car5 [39], jog-
ging [39], and PETS 2009 Dataset S2 6) and four are our own (squash, ball1,ball2,
and toy1 ). All involve frequent short and long term occlusions (partial and full)
and/or variations in target motion. We used three metrics for evaluation: centre
location error, Pascal score [42], and precision at a fixed threshold of 20 pixels
[43].

5.1 Comparison with competing methods

Quantitative Evaluation: Table 1 summarises tracking accuracy obtained
from sequences in which the target is occluded. MTS-L outperformed competing
methods in most sequences, because it efficiently allocated particles to overcome
occlusions. VTD performed badly because inappropriate appearance model up-
dates during longer occlusions causes drift from which it cannot recover. Al-
though SemiBoost uses explicit re-detection once the target is lost, its accuracy
was low due to false positive detections. With the ability to search the whole

4 PETS 2001 Dataset 1 is available from http://ftp.pets.rdg.ac.uk/
5 We downsampled original car sequence by a factor of 3 to have partially low frame rate.
6 PETS 2009 Dataset S2 is available from http://www.cvg.rdg.ac.uk/PETS2009/
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image space using an efficient sampling scheme, WLMCMC produced the low-
est error in the TUD-Campus and jogging sequences. In sequences containing
partial occlusions (Fig. 4), SCM produced the lowest error in the car sequence,
while both SCM and L1-APG had the best performance in the TUD-Crossing
sequence. SCM uses a sparse based generative model that considers spatial rela-
tionship among local patches with an occlusion handling scheme, and L1-APG
employs a robust minimization model influenced by an explicit occlusion detec-
tion mechanism. Thus, both these approaches are quite effective in overcoming
partial occlusions. In contrast, MTS-L and MTS-TS use a very simple, generic
appearance model, and no explicit occlusion handling mechanism7.

Table 1: Tracking accuracy in the presence of occlusion

(a) Mean centre location error in pixels is given, averaged over all frames of all videos showing
occlusions. Each tracker was run five times and the results were averaged. The best results are
marked in bold. T denotes the prediction-scales, and N is the number of particles propagated from
t−k to t in our proposed method. N is fixed at 20, and Nt is the total number of particles accumulated
at time t in our proposed method. The number of particles used in baseline trackers was equal to
Nt.

Sequence SCM ASLA L1 VTD Semi FragT WL TNCV TRW TTS MTS-L MTS-TS T Nt=N×T

ball2 76 71 71 66 78 106 37 91 71 125 17 16 32 640
TUD-Camp 186 180 100 186 61 112 22 141 119 31 24 22 9 180
TUD-Cross 2 6 2 63 62 5 50 43 75 106 25 21 25 500
PETS 2001 61 63 60 83 114 67 90 43 131 112 25 21 32 640

Person 91 80 103 85 177 84 25 90 33 95 10 8 20 400
PETS 2009 35 13 81 94 29 10 91 75 37 56 7 6 14 280

car 8 31 31 47 38 15 28 37 43 87 25 25 20 400
toy1 88 85 111 98 99 107 30 74 134 76 21 22 30 600

jogging 110 104 45 70 30 94 19 27 24 100 25 24 20 400

(b) A(B): A - the percentage of correctly tracked frames based on Pascal Score [42]; B - Precision
at a fixed threshold of 20 pixels. Pascal score is computed by assessing to what extent the tracking
template overlaps the ground truth template as a ratio. If the Pascal score is greater than 0.5 in a
certain frame, that frame is counted as a correctly tracked frame. Precision is computed by dividing
the number of frames, where estimated target location was not beyond the fixed threshold distance
of 20 pixels of the ground truth, by the total number of frames in a video sequence. The best results
are marked in bold.

Sequence SCM ASLA L1 VTD Semi FragT WL MTS-L MTS-TS

ball2 12(0.21) 9(0.17) 7(0.21) 9(0.11) 7(0.13) 9(0.09) 28(0.53) 31(0.8) 36(0.8)
TUD-Camp 14(0.17) 10(0.14) 19(0.21) 25(0.25) 38(0.34) 27(0.27) 46(0.61) 55(0.57) 57(0.46)
TUD-Cross 100(1) 99(0.9) 100(1) 24(0.23) 41(0.42) 87(1) 25(0.23) 61(0.59) 69(0.65)
PETS 2001 23(0.33) 23(0.27) 22(0.25) 20(0.25) 17(0.2) 16(0.31) 19(0.52) 58(0.65) 66(0.7)

Person 45(0.46) 44(0.45) 10(0.12) 43(0.45) 20(0.2) 38(0.41) 49(0.86) 79(0.93) 80(0.94)
PETS 2009 26(0.36) 36(0.7) 21(0.26) 21(0.21) 27(0.45) 65(0.73) 7(0.23) 70(0.97) 71(0.96)

car 92(0.93) 62(0.64) 66(0.65) 66(0.65) 55(0.46) 80(0.76) 62(0.52) 71(0.72) 73(0.72)
toy1 18(0.19) 19(0.2) 15(0.15) 16(0.18) 16(0.18) 3(0.09) 49(0.8) 43(0.8) 38(0.78)

jogging 21(0.22) 22(0.22) 21(0.21) 22(0.22) 60(0.61) 21(0.21) 42(0.61) 20(0.44) 21(0.45)

Tracking accuracy was also measured when the target was occluded and un-
derwent motion variation at the same time (Tables 2a and 2b). MTS-L produced
higher accuracy than the other methods. The allocation of particle sets with dif-
ferent spreads from multiple prediction scales in regions having probable local

7 We admit that a more complex system complete with more advanced appearance models would
obtain a higher overall tracking accuracy, but we believe that for the sake of scientific evidence
finding employing such a system would obfuscate attribution of our experimental results to the
original hypothesis.
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maxima lets MTS-L capture increased search space with relatively smaller sam-
pling effort. VTD performed well in squash sequence because it combines two
motion models of different variances to form multiple basic trackers which search
a large state space efficiently. WLMCMC produced the second best accuracy on
ball1 as it searches the whole image space using an efficient sampling mechanism
to capture abrupt target motion.

Table 2: Accuracy through simultaneous motion variation and occlusion
.

(a) Mean centre location error (pixels).

Sequence SCM ASLA L1 VTD Semi FragT WL TNCV TRW TTS MTS-L MTS-TS T Nt=N×T

squash 40 34 60 20 68 35 22 27 52 41 12 10 5 100
ball1 91 96 124 69 66 188 23 74 87 98 15 14 14 280

(b) A(B): A - the percentage of correctly tracked frames based on Pascal Score; B - Precision at a
fixed threshold of 20 pixels.

Sequence SCM ASLA L1 VTD Semi FragT WL MTS-L MTS-TS

squash 60(0.62) 38(0.56) 9(0.11) 68(0.78) 44(0.7) 37(0.5) 50(0.75) 71(0.92) 75(0.96)
ball1 6(0.06) 3(0.04) 2(0.05) 19(0.22) 19(0.33) 2(0.02) 35(0.79) 40(0.83) 41(0.89)

Qualitative Evaluation: Tracking is particularly difficult when the time
between consecutive occlusions is small. In TUD-Campus, the tracked person
suffers two occlusions only 17 frames apart (Fig. 5a). MTS-L and WLMCMC
recover the target after each occlusion, while other methods fail due to incorrect
appearance model updates, or being distracted by the surrounding clutter. Video
surveillance data often requires tracking through partial and/or full occlusions.
In the PETS 2001 Dataset 1 sequence (Fig. 5b) the target (car) first stays
partially occluded for a considerable time, and is then completely occluded by
a tree. MTS-L successfully re-acquires the target. Occlusions of varying lengths
are common in real-world tracking scenarios. In the person sequence, a person
moves behind several trees and is shot with a moving camera. As shown in Fig. 6,
competing methods lose the target after first occlusion(Frame # 238) or second
occlusion(Frame # 329), while MTS-L shows robustness in coping with varying
lengths of occlusions.

(a) TUD-Campus]12]39 (b) PETS’01]38]92

Fig. 5: Tracking results in a crowded (a) and a surveillance environment (b).
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(a) Person]238 (b) Person]238 (c) Person]329 (d) Person]329 (e) Person]457 (f) Person]457

Fig. 6: Tracking results with occlusions of different lengths.

(a) Squash]74 (b) Squash]74 (c) Squash]274 (d) Squash]274 (e) ball1]792 (f) ball1]792

Fig. 7: Tracking results in case of motion variations and frequent occlusions.

The ability of MTS-L to cope with simultaneous occlusion and non-constant
target motion was tested by making two challenging sequences: squash and ball1.
In these sequences, the target accelerates, decelerates, changes direction sud-
denly, and is completely occluded multiple times. Fig. 7 illustrates tracking
results. MTS-L provided more accurate tracking than the other methods on
both sequences. This is because the efficient allocation of particles at multiple
prediction-scales allows a wider range of target motion to be handled. WLM-
CMC shows good accuracy in the ball1 sequence as it is aimed at handling
abrupt target motion.

5.2 Analysis of the Proposed Framework

Without Multiple Prediction-Scales The proposed framework was tested
without employing multiple prediction-scales. We designed MTSWPS-L in which
the target state is predicted only 1 frame ahead i.e. T = 1. For evaluation, at
first, the number of particles in MTSWPS-L was kept equal to Nt and the process
noise σxy was same as used for MTS-L between two consecutive time-steps. To
analyze further, later, both the number of particles Nt and the process noise σxy
were doubled and tripled. Fig. 8(left) reveals the performance of the proposed
framework with and without multiple prediction-scales in five video sequences
involving occlusions. As can be seen, MTSWPS-L has poor performance com-
pared to MTS-L in all 5 sequences even after increasing the sampling effort and
the process noise by three times of the original. Therefore, we can say that op-
eration over multiple prediction-scales allows the proposed method to reliably
handle occlusions in a principled way.

Without Multiple Model-Scales The proposed framework was also an-
alyzed without learning over multiple model-scales. MTSWMS-L denotes the
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Fig. 8: (left)Performance of the proposed framework with and without multiple prediction-
scales.(right)Performance of the proposed framework with and without multiple model-scales.

proposed framework in which a linear motion model is learned over model-scale
2 only. As a result, there is no need to select models from each of the previous
time-steps at the current time-step since only 1 model is learned over a single
model-scale. As can be seen in Fig. 8(right), MTS-L has superior performance
over MTSWMS-L in all 5 sequences. This shows that by constructing motion
models over multiple model-scales MTS-L maintains a richer description of the
target’s path, which is not possible with a single scale model. Furthermore, this
diverse set of models produces temporal priors that ultimately develops into a
rich prior distribution required for reliably recovery of tracking after occlusions.

Experimental results show the robust performance of the proposed framework
during occlusions, but it can fail when faced with very long duration occlusions.
In addition, it can be distracted by visually similar objects after occlusion, if the
state estimations during the period of occlusion are poor.

6 Conclusion

We propose a tracking framework that combines motion models learned over
multiple model-scales and applied over multiple prediction-scales to handle oc-
clusion and variation in target motion. The core idea is to combine sufficient
particle sets at each time-point that at least one set will be valid, and allow
recovery from occlusion and/or motion variation. These particle sets are not,
however, simply spread widely across the image: each represents an estimation
of the posterior probability from some previous time-point, predicted by a mo-
tion model generated over an appropriate model-scale.

The proposed method has shown superior performance over competing track-
ers in challenging tracking environments. That there is little difference between
results obtained using linear and two-stage motion models suggests that this
high level of performance is due to the framework, rather than its components.
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36. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking.
In: Computer visionECCV 2002. Springer (2002) 661–675

37. Zhong, W., Lu, H., Yang, M.H.: Robust object tracking via sparsity-based collab-
orative model. In: Computer Vision and Pattern Recognition (CVPR), 2012 IEEE
Conference on, IEEE (2012) 1838–1845

38. Jia, X., Lu, H., Yang, M.H.: Visual tracking via adaptive structural local sparse
appearance model. In: Computer Vision and Pattern Recognition (CVPR), 2012
IEEE Conference on, IEEE (2012) 1822–1829



MTS: A Multiple Temporal Scale Tracker 17

39. Wu, Y., Lim, J., Yang, M.H.: Online object tracking: A benchmark. In: Computer
Vision and Pattern Recognition (CVPR), 2013 IEEE Conference on, IEEE (2013)
2411–2418

40. Andriluka, M., Roth, S., Schiele, B.: People-tracking-by-detection and people-
detection-by-tracking. In: Computer Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, IEEE (2008) 1–8

41. Dihl, L., Jung, C.R., Bins, J.: Robust adaptive patch-based object tracking using
weighted vector median filters. In: Graphics, Patterns and Images (Sibgrapi), 2011
24th SIBGRAPI Conference on, IEEE (2011) 149–156

42. Santner, J., Leistner, C., Saffari, A., Pock, T., Bischof, H.: Prost: Parallel robust
online simple tracking. In: Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, IEEE (2010) 723–730

43. Babenko, B., Yang, M.H., Belongie, S.: Visual tracking with online multiple in-
stance learning. In: Computer Vision and Pattern Recognition, 2009. CVPR 2009.
IEEE Conference on, IEEE (2009) 983–990


